Exceptional service in the national interest

energy.sandia.gov

Advanced Membranes for Vanadium Redox Flow

Batteries (VRB) September 17th, 2014

Cy Fujimoto

Acknowledgements

Dr. Imre Gyuk, Program Manager of the Electrical Energy Storage Program, for their support and funding of the Energy Storage Program.

Project Overview

In the Energy Storage Program, we are developing electrical energy storage solutions to develop a more efficient, reliable and secure electricity network.

There has been large investments made in a variety of electrochemical storage due to its fast response times, energy-power capacity and lifetimes

Electrochemical storage: Li ion, sodiumhalide, hybrid Pb acid, <u>flow batteries</u> (aqueous and non aqueous) and <u>electrochemical</u> (EC) <u>hydrogen production</u>

Both flow batteries and EC hydrogen production typically Nafion is used as a separator due to good performance and durability. However, cost is an issue (\$250-500/m²)!

Partnering with industry is important to show relevance. From last year meeting in SD, ARPA-e recipient ProtonOnsite had interest in materials being developed. Funds-in via Work for Others with ProtonOnsite

Project

- Separation of energy and power
- Robust battery. Allows for deep discharge, long life cycles and little capacity fade
- VRB Proven technology UniEnergy plans for 3.5MW of total storage
- Several companies looking to commercialize the technology

Cost is focus since current capital costs range between \$500-800/kWh

Cost of VRB

Sandia National Laboratories

- New cost model by PNNL. Cost calculated based on shunt-pumping losses and delivered power and energy capacity.
- Two type of VRB
- 1. Power intensive: 1 MW/0.25 MWh (Power quality applications)
- 2. Energy intensive: 1 MW/4 MWh (Load following)
- In both scenarios the membrane separator takes up a significant portion of total cost
- Nafion[™] \$250-500/m²; Perfluornated polymer (primarily C-F)

VRB capital costs1

Power intensive case

Energy intensive case

Developing hydrocarbon polymer (C-H) with equal or better performances to Nafion at a price target of \$40/m²

Membrane Performance

Sun & Pezeshiki, UT

1st and 2nd Gen materials show good energy efficiency

Kim, PNNL

Ex-situ: 0.1M V⁺⁵

Cycle number

2nd Gen: QDAPP

 H^{+}

1st Gen: SDAPP

 H^{+}

⊕ (H₃C)₃N

⊕ (H₃C)₃N

 H^{+}

Durability is primary issue with 1st and 2nd Gen materials

1st Gen: SDAPP

To improve oxidation resistance, need to reduce electron density on the aryl rings

Gen3: Oxidatively stable group [OSG]

X = e⁻ withdrawing group

Better stability than Gen 1. Submitted TA last year, preparing to file patent

Gen4 – Developed this year from lessons learned from Gen3. Submitted TA this year.

We cannot discuss structures yet, but we will cover initial testing

Tang, ORNL

25 mL of 1.7 M V⁺⁵, 5M SO_4^{-2} 200mg of membrane

- Faster V+4 generation = least stable in V+5
- Gen1 with fastest V⁺⁴ concentration increase
- Gen4 reacts over 5 times more stable than Gen1 or 2

Gen4 samples do show V⁺⁴, but significantly better than Gen 1&2

Tang, ORNL

- Gen1 and Gen2 films cracked discolored after test. Gen4 remained intact
- IR shows new peak growth in Gen1 after test. Gen4 show no changes before-after
- Gen4 slightly improved performance Nafion212

Industry Interest

Hydrogen production with zero carbon footprint through electrolysis

Leverage Hydrogen Flexibility for Energy Storage

Heavy interest in Europe for wind capture and biogas conversion

- "Traditional" water electrolysis is acidic
- Cost of Nafion and precious metal catalysts (Pt and Ir) drive cost of technology
- Alkaline, basic conditions allow use of non precious metal catalysts and lower cost
- No stable alkaline separator material available
- Desired lowest voltage for hydrogen production and no catastrophic failure
- Radel failed after 500 hrs, commercial AEM failed near 1000 hrs, Sandia (ATM-PP) over 2000 hrs (never failed, test halted)

Lifetime is very promising, some work needs to be done in lowering operational voltages

FY14 Accomplishments

- Gen4 significantly improved durability over Gen 1&2
- Gen4 VRB performance (EE and VE) are better than Nafion212
- Patent filing on Gen3 and Gen4 soon to follow

Future Tasks

- Long term VRB testing for Gen3 and 4
- Long term ex situ (month) with UV-vis and IR analysis
- Work with industry to promote other electrochemical technologies to implement Gen3 and 4

Contact: chfujim@sandia.gov

Although the degraded S-Radel was not fully characterized, study does prove V+5 is a strong enough to oxidize backbone – Can we design polymer backbone to resistance oxidation